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Abstract. The order–disorder phase transition in the linear chain compound N(CH3)4MnCl3
(TMMC) was investigated by means of x-ray diffraction. The hexagonal structure at room
temperature (space groupP 63/m with Z = 2) is characterized by an orientational disorder of
the organic group TMA. A weakly first-order phase transition occurs at 126 K which stabilizes a
monoclinic low-temperature phase (space groupP 21/b with Z = 4) characterized by a doubling
of the hexagonal unit cell along theb direction. The cell parameters were determined in a large
range of temperature including the two phases (from 5 to 300 K) and the extent of lattice
distortion was measured in the ordered monoclinic phase. The temperature dependences of
both the spontaneous strain component (e1 − e2) and the intensity of superstructure reflections
were analysed by a Landau type free energy expansion involving two coupled order parameters
necessary to account for this ‘triggered’ phase transition.

1. Introduction

Tetramethylammonium manganese (II) chloride, N(CH3)4MnCl3 (TMMC), exhibits a one-
dimensional type structure, built up from infinite chains made of MnCl6 octahedra sharing
opposite faces. The space between chains is occupied by the [N(CH3)4]+ cations (TMA)
[1]. At ambient pressure, TMMC undergoes at 126 K a weakly first-order structural phase
transition from a disordered hexagonal phase (phase I) with space groupP 63/m andZ = 2
formula units per unit cell to an ordered monoclinic phase (phase II) [2]. This phase
transition is governed essentially by the reorientational dynamics of the TMA groups [2–
10].

The space group and structure of the monoclinic low-temperature phase have been the
subject of numerous discussions [2–9]. At present, it is confidently established that the
space group isP 21/b with Z = 4 [10] (unique axis alongc), Thus corresponding to a
doubling of the hexagonal unit cell along theb axis. In such a situation, point M (012 0)
at the hexagonal Brillouin zone boundary [11] is replaced at zone centre in phase II. The
orientational disorder of the TMA groups in phase I was appropriately described in terms of a
complex Frenkel type six-site model, in which the TMAs occupy instantaneously the general
position [10]. Moreover, the ‘frozen’ orientation of the TMA found in the ordered phase II
practically coincides with one out of the six energetically equivalent orientations in the
hexagonal phase. The I↔ II transition is further characterized by an antiphase translational
displacement of the octahedra chains along the hexagonal axis, as a result of the freezing
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of the transverse acoustic mode TA(M) at point M, coupled with the orientational ordering
process of the TMA groups [7, 9, 10].

The I ↔ II phase transition of TMMC is ferroelastic since it involves the change of the
crystalline system from hexagonal to monoclinic. Ultrasonic measurements [12] have shown
a marked softening of theC66 elastic constant in the hexagonal phase when the transition
temperatureTc = 126 K is approached from above. This observation strongly speaks in
favour of a proper (or pseudo-proper) ferroelastic transition, despite the existence of cell
doubling, which usually would characterize an improper ferroelastic. Hence, in the frame
of Landau theory, a phenomenological thermodynamic potential has been proposed [13] in
which η, a zone centre order parameter (OP) withE2g symmetry, is bi-linearly coupled
with the (e1 − e2) and e6 components of the strain tensor, to account for the softening of
C66. Furthermore, in order to achieve the observed unit-cell doubling,η ‘triggers’ a zone-
boundary OP denoted asξ , with M−

1 /Au symmetry (according to the notations of Bradley
and Cracknell [11]), through coupling terms of the formηξ2. It is worth noting that such a
potential also predicts the existence of another monoclinic phase with space groupP 21/m

and Z = 2 (phase III), corresponding to the solutionη 6= 0, ξ = 0. This phase III of
TMMC can be stabilized under hydrostatic pressure above 0.2 GPa, [2, 8, 14]. However,
it should be remarked that the only pertinent experimental evidence (other than symmetry
considerations) upon which this model was actually established is the behaviour of theC66

elastic constant [12, 13]. To date, no systematic measurement of the coupled OPsη andξ

that drive the phase transition has been performed. Therefore, it is necessary to assemble
other experimental data to confirm (or eventually deny) the validity of this model on more
serious grounds.

In this work, we report powder x-ray diffraction measurements of TMMC carried out in
a large range of temperature aiming at (i) the determination of the thermal evolution of the
components of the spontaneous strain tensor which are associated with the OPη and (ii)
the measurement of the temperature dependence of the superstructure reflections observed
in the monoclinic phase, related to the OPξ . Then, these results will be compared with
predicted behaviours according to the model mentioned above [13].

2. Experimental details

Rapid evaporation at 333 K of saturated acidic aqueous solution containing stoichiometric
amounts of N(CH3)4Cl and MnCl2 (Merck) yields small pink crystalline samples of TMMC.
These were finally ground and sieved to obtain a homogeneous powder.

A powder x-ray counter diffractometer with Seeman–Bohlin setting has been used, with
monochromatized chromiumKα1 radiation (λ = 2.289 62 Å), working in the 3–470 K
temperature range [15]. The choice of this long-wavelength radiation provides us with a
good resolution: this is particularly interesting for the study of the monoclinic phase of
TMMC which presents a large lattice parameter (b ≈ 18 Å) and consequently reflections
very closely spaced on the powder diffraction pattern. Measurements have been limited
to the domain of 48◦ < 2θ < 72◦ by steps of 0.02◦ in 2θ . This choice represents a
reasonable compromise between the resolution and overlapping of diffraction peaks at large
angles. Note also that the intensity of reflections affected by strong Debye–Waller factors,
particularly in the disordered phase [10], fades away exponentially as the scattering angle
increases. The counting time was set to 40 s/point to guarantee an acceptable statistic, with
a typical generator power of about 30 kW.

The data have been fitted by means of pattern matching refinement, which is a standard
option in the extended Rietveld refinement program FULLPROF [16]. This treatment
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consisted in fitting the while diffraction pattern using a profile model with arbitrary structure
factor calculations. The fitted parameters are the cell parameters, a constant background
intensity and the angular offset. The profile parameters were optimized and set constant
during the refinement process.

3. Results

The diffraction patterns recorded in the temperature range of 20 K< T < 300 K are shown
in figure 1. Two selected diffraction patterns corresponding one to the hexagonal and one to
the monoclinic phase are represented in figure 2. The phase transition is clearly evidenced
by the splitting of diffraction peaks due to the change of the crystal class from 6/m to 2/m,
and by the appearance of superstructure reflections due to the doubling of the unit cell along
the b axis. Some of the most apparent superstructure reflections are indicated in figure 2.

Besides, the temperature dependences of the lattice parameters extracted from the pattern
matching refinements are reported in figure 3. In the monoclinic phase,bm/2 was plotted
for a direct comparison with theah = bh parameter of the hexagonal phase. The linear
extrapolations, that can reasonably be performed in the low-temperature phase from the
data in the high-temperature phase, are also shown in this figure: they represent ‘baselines’
which take into account the thermal expansion of the crystal and so permit us to calculate
the excess contribution from the phase transition [17]. It is worth noting that our results
in the monoclinic phase, concerning thea andb lattice constants, differ rather from those
previously reported by Peercyet al using single-crystal photographic methods [2], but
look more similar to those of Hutchingset al obtained by means of neutron diffraction
[3]. These discrepancies might originate from the complex twinning that always occurs
in the low-temperature phase [2, 3, 9]. Since in powder diffraction measurements twinning
problems no longer exist, our results should be more relevant ones.

Figure 1. X-ray diffraction patterns of TMMC recorded at different temperatures ranging from
20 to 300 K at wavelengthλ = 2.289 62Å.

From these data, the strain tensor components (i.e. (e1 − e2) ande6 with E2g symmetry
in the hexagonal phase), that yield spontaneous strains in the monoclinic phase, can easily
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be calculated from the relations [17, 18]

e1 − e2 = (2a sinγ − √
3b)/

√
3a0

e6 = (2a cosγ + b)/
√

3a0

wherea0 is the temperature dependent extrapolated value ofah (see figure 3) andb = bm/2,
as mentioned already. The temperature dependences of (e1 − e2) and e6 are reported in
figure 4. It is clearly seen that thee6 component is much smaller than (e1 − e2). In fact,
e6 remains very weak because of a subtle balance between the thermal variations of the
lattice parametersa, b and γ . The (e1 − e2) component takes relatively large values at
low temperatures; in the following section, we intend to analyse its thermal evolution to
ascertain whether or not it matches the behaviour predicted by the proposed Landau effective
potential [13].

Finally, the thermal evolutions of the structure factors of superstructure reflections
(which appear in the monoclinic phase) have been extracted from the pattern matching
refinements and their intensitiesIs . These reflections are related to the doubling of the unit
cell at point M (0 1

2 0) of the hexagonal Brillouin zone and so give a measure of the OPξ .
More precisely, since the static atomic displacements occurring through the phase transition
of TMMC are small [9, 10],Is ∝ ξ2 [19]. The superstructure reflection with Miller indices
(25̄2), which is fairly well isolated on the present diffraction patterns of the monoclinic
phase (figure 2), has been selected. The plot ofIs (2 5̄ 2) as a function of (e1 − e2) is
represented in figure 5: a good proportionality relation is observed. This point will be
detailed in the following section.

4. Discussion

4.1. Definition of the order parameters

Let us recall briefly the physical sense of the primary OPη at zone centre and that of the
‘triggered’ one,ξ , at the zone-boundary point M, which were introduced in the proposed free
energy expansion [13]. It has been clearly established thatη is solely related to the disorder
processes of the TMA [12], which were depicted successfully in the frame of a six-site
Frenkel (jump) model [10, 20]. From such models, pseudo-spin coordinates expressed in
terms of occupation probabilities of the TMA in their different possible orientations can be
derived: they act as order parameters responsible for the phase transition [12, 13, 21]. The
actual pseudo-spin coordinates related to the six-site model will not be reported here since
a basically equivalent group-theoretical analysis has already been developed in full detail
for the parent crystal N(CH3)4CdBr3 (TMCB) [21]. Let us however indicate the symmetry
properties of these pseudo-spin variables at zone centre:

R(0) = Bg + E1g + E2g + Au + E1u + E2u

and at the M point

R(M) = 2M+
1 /Ag + 3M+

2 /Bg + 3M−
1 /Au + 2M−

2 /Bu.

The analysis of these coordinates implies necessary conditions to reach a completely
ordered ground state [21]. In the case of the monoclinic phase, with space groupP 21/b

(Z = 4), it can be shown that the achievement of the experimentally observed ordered
state [10] requires the simultaneous ‘freezing’ of one pseudo-spin variable at zone centre
with E2g symmetry (thus corresponding toη) and of two coordinates at point M (012 0),
with M−

1 /Au symmetry (thus corresponding toξ ). Let us point out thatξ also contains
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(a)

(b)

Figure 2. X-ray diffraction patterns of TMMC recorded (a) in the hexagonal phase at 130 K
and (b) in the monoclinic phase at 20 K (λ = 2.289 62Å). The observed profiles are shown
as dots and the calculated profiles as smooth curves; short vertical markers represent reflections
allowed by symmetry. Difference profiles are represented at the bottom of the figures.

a displacive contribution due to the transverse acoustic mode TA(M) [9, 10] coupled with
the relevant pseudo-spin coordinate (M−

1 /Au symmetry) attached to the reorientations of
the TMA groups [7]. In spite of the complex nature of the OPξ , we are bound in this
first analysis to considerξ as a whole, since the superlattice reflections include both order–
disorder and displacive contributions.

4.2. The Landau free energy expansion

As proposed in a previous study [13], the Landau free-energy expansion that accounts for
the ‘triggered’ I↔ II phase transition can be written

18(η, e, ξ) = 18(η) + 18(e) + 18(η, e) + 18(ξ) + 18(η, ξ). (1)
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(a)

(b)

Figure 3. The temperature dependence of the lattice parameters of TMMC through the hexagonal
↔ monoclinic phase transition. The solid lines correspond toa0 and c0 determined by linear
least-squares fits of the experimental points in the hexagonal phase (see text).

For the sake of homogeneity,18(η) is expressed in a real form equivalent to the complex
form previously adopted [13, 22, 23]:

18(η) = α1(T )(η2
1 + η2

2) + 2β1(η
3
1 − 3η1η

2
2) + 2β ′

1(η
3
2 − 3η2

1η2) + γ1(η
2
1 + η2

2)
2 + · · · (2)

whereα1(T ) = α0
1(T − T0). Note the presence of two cubic invariants that make the phase

transition inη necessarily first order.
The elastic energy has the classical form:

18(e) = 1

2

6∑
i,j=1

C0
ij eiej (3)
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Figure 3. (Continued)

where theC0
ij are the ‘bare’ elastic constants (in the hexagonal system(C0

11−C0
12)/2 = C0

66),
and theei, ej are the strain tensor components (Voigt notation).

18(η, e) = a[η1(e1 − e2) + η2e6] + b[η2(e1 − e2) − η1e6]

+d1(e1 + e2)(η
2
1 + η2

2) + d2e3(η
2
1 + η2

2) + · · · (4)

18(ξ) = α2[ξ2
1 + ξ2

2 + ξ2
3 ] + γ2[ξ4

1 + ξ4
2 + ξ4

3 ] + δ2[ξ2
1ξ2

2 + ξ2
1ξ2

3 + ξ2
2ξ2

3 ] + · · · . (5)

ξ1, ξ2 andξ3 are the three components of the OPξ , corresponding respectively to the three
arms in the star of the wavevector at point M (01

2 0, 1
2

1
2 0, 1

2 0 0).

18(η, ξ) = C1[(2ξ2
1 − ξ2

2 − ξ2
3 )η1 +

√
3(ξ2

2 − ξ2
3 )η2]

+C2[
√

3(ξ2
2 − ξ2

3 )η1 − (2ξ2
1 − ξ2

2 − ξ2
3 )η2]. (6)

For convenience, the OPη and the coupling constantsa andb are expressed in terms
of polar coordinates, i.e.{

η1 = η cosϕ

η2 = η sinϕ

{
a = 3 cosψ
b = 3 sinψ.

(7)

The monoclinic phase II,P 21/b (Z = 4), corresponds to solutions such that [13]

ξ1 = ξ 6= 0 ξ2 = ξ3 = 0 (8)

since only one point in the star of M (e.g. 012 0) is replaced at the zone centre in this
phase. Then, using relations (1)–(8) and the minimization equations∂18(η, e, ξ)/∂ei = 0
(i = 1–6), the ‘effective’ free energy is

1̃8(η, ϕ, ξ) = α0
1(T − T1)η

2 + 2(β1 cos 3ϕ − β ′
1 sin 3ϕ)η3 + γ ′

1η
4 + α2ξ

2

+γ2ξ
4 + 2(C1 cosϕ − C2 sinϕ)ηξ2 (9)

where

T1 = T0 + 32/2α0
1C

0
66 (10)

and

γ ′
1 = γ1 − [2d2

1C0
33 + d2

2(C0
11 + C0

12) − 4d1d2C
013]/2[C0

33(C
0
11 + C0

12) − 2(C0
13)

2]. (11)
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T1 is the extrapolated temperature related to the cancellation of the elastic constantC66

when the transition temperature is approached from above. A fit of the experimental data
gaveT1 = 74 K [12, 13].

Figure 4. The temperature dependences of the strain tensor components (e1 − e2) and e6 of
TMMC through the hexagonal↔monoclinic phase transition. The solid lines are the best fits to
the data derived from relations (16), (17) and (27) (see the text).

The solutions for the potential (9), namely phase IP 63/m with Z = 2 (η = ξ = 0),
phase IIIP 21/m with Z = 2 (η 6= 0, ξ = 0) and phase IIP 21/b with Z = 4 (η 6= 0, ξ 6= 0),
are determined by minimization, so the three following simultaneous equations must be
fulfilled:

∂1̃8/∂η = α0
1(T − T1)η + 3(β1 cos 3φ − β ′

1 sin 3φ)η2

+2γ ′
1η

3 + (C1 cosφ − C2 sinφ)ξ2 = 0 (12)

∂1̃8/∂ξ = ξ [α2 + 2γ2ξ
2 + 2η(C1 cosφ − C2 sinφ)] = 0 (13)

∂1̃8/∂φ = η[3(β1 sin 3φ + β ′
1 cos 3φ)η2 + (C1 sinφ + C2 cosφ)ξ2] = 0. (14)

It should be pointed out that there is no symmetry constraint on the direction taken by the
degenerate OPη (E2g symmetry) in the (η1, η2) plane and therefore the possibility of a
temperature dependence ofφ in the low-temperature phases arises [19]. However, as long
asη contains solely pseudo-spin coordinates derived from the six-site Frenkel model, it can
be shown [21] that conditions onφ must be enforced in order to achieve a perfect ordered
state at low temperature, namely

φ = k2π/3 (k integer modulo 3). (15)

For convenience, we chooseφ = 0, knowing that equivalent solutions (twin domains) are
obtained withk = 1 or 2. Then, relation (14) impliesβ ′

1 = 0 andC2 = 0. It follows that
the spontaneous strains in the monoclinic phases II and III are given by

(e1 − e2) = −(3/C0
66)η cosψ (16)

e6 = (3/C0
66)η sinψ. (17)
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Figure 5. Intensity of the superstructure reflection (25̄ 2) of TMMC observed in the monoclinic
phase at different temperatures as a function of the spontaneous strain component (e1 − e2).
Dots are the experimental points and the solid line is the best fit to the data according to the
relation (30) (see the text).

In phase III (η 6= 0, ξ = 0), the spontaneous value of the order parameter is

ηIII = (3ηc/4)[1 +
√

1 − 8(T − T1)/9(TIII − T1)] (18)

whereTIII is the transition temperature from phase I to phase III:

TIII = T1 + β2
1/α0

1γ
′
1 (19)

andηc is the jump value ofη at TIII (first-order phase transition);

ηc = −β1/γ
′
1. (20)

In phase II (η 6= 0, ξ 6= 0), ξ is obtained from relation (13):

ξ2 = −(α2 + 2C1η)/2γ2. (21)

Sinceα2 and γ2 must be positive to stabilize the effective potential (9) in the hexagonal
phase, relation (21) implies the ‘triggering’ conditions for the occurrence of the actual
first-order I↔ II phase transition:

C1 > 0 ⇒ ηc < −α2/2|C1| < 0 (22)

C1 < 0 ⇒ ηc > α2/2|C1| > 0. (23)

Finally, putting (21) back into (9), withβ ′
1 = C2 = 0, yields

1̃8(η) = −α2
2/4γ2 − (α2C1/γ2)η + [α0

1(T − T1) − C2
1/γ2]η2 + 2β1η

3 + γ ′
1η

4 (24)

so ηII , the equilibrium value ofη in phase II, is given by one of the roots of the cubic
equation

∂1̃8(η)/∂η = −α2C1/γ2 + 2[α0
1(T − T1) − C2

1/γ2]η + 6β1η
2 + 4γ ′

1η
3 = 0. (25)

Obviously, the form ofηII corresponding to the minimum of (24) cannot be conveniently
expressed algebraically.
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4.3. Analysis of the experimental data

First, the data of figure 4 were fitted with the help of relations (16), (17) and (25). Clearly, for
such a purpose, the experimental points corresponding to (e1−e2) are much better suited than
those corresponding toe6, because of the large amplitude observed in the thermal evolution
of (e1 − e2) compared to that ofe6. As mentioned just above, analytical solutions of (25)
cannot be conveniently handled, so we have solved this equation numerically and fitted the
results to the data points by the least-squares method. Of course, the selected root,ηII , is
the one corresponding to the true minimum of (24). The characteristic temperatureT1 was
fixed to the valueT1 = 74 K previously determined [12, 13] and, in the first attempts,α2 was
chosen constant. Thusξ is a secondary OP entirely ‘triggered’ byη [24]. This procedure
provides us with acceptable solutions for temperatures up toT ≈ 120 K; however in the
range ofTc = 126 K < T < 120 K, a change in the true minimum of (24), unavoidably
occurs, thus leading to an undesirable change in the sign of (e1 − e2). In order to avoid this
intricacy, we have considered the general case of two coupled order parameters, whereξ

acts as a full OP with its own temperature dependence, so we putα2 = α0
2(T − T2) with

α0
2 > 0. Of course, in order to ensure the stability of the hexagonal phase, one should have

T2 < Tc = 126 K. By this means, we succeeded in fitting (e1 − e2) in the whole range of
stability of phase II.

In practice, withη = R(e1 −e2), R = −C0
66/(3 cosψ) (see relation (16)),(e1 −e2) < 0

(figure 4), we chooseR > 0. This impliesη < 0, β1 > 0 and C1 > 0; note that an
equivalent choice withR < 0, η > 0, β1 < 0 andC1 < 0 could be made as well (see
relations (20)–(23)). Then (25) is written in the form

−(T − T2) + RA[(T − T1) − δ](e1 − e2) + R2B(e1 − e2)
2 + R3C(e1 − e2)

3 = 0 (26)

where

A = 2α0
1γ2/α

0
2C1

δ = C2
1/α0

1γ2

B = 6β1γ2/α
0
2C1

C = 4γ ′
1γ2/α

0
2C1

T1 = 74 K (fixed).

(27)

So, it turns out that there are five independent adjustable parameters for ten data points.
The best fit for the temperature dependence of (e1 − e2) is shown in figure 4; the
phenomenological coefficients take the following values:

RA = 2550

δ = 46.5 K

R2B = 4.40× 106

R3C = 2.91× 108

T2 = −11.3 K.

(28)

The agreement with the experimental data is quite satisfactory. The thermal evolution of
e6 has also been fitted by using the same set of coefficients as given in (28), with only one
adjustable scale factorR′ = − tanψ (see relations (16) and (17)). Though the general trend
of the variation ofe6 with temperature is well reproduced (R′ = 81× 10−3) (figure 4), this
is not a very convincing piece of information, in consideration of the rather bad accuracy
of the e6 experimental values.
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A more appropriate test for the model validity is provided by the temperature evolution
of the superstructure reflection intensityIs (2 5̄ 2). Let us define [19]

Is = λξ2. (29)

Then, from relations (16), (21), (27) and (29)

Is = (λα0
2/2γ2)[(T − T2) + RAδ(e1 − e2)] (30)

where the adjustable proportionality factor isλα0
2/2γ2, all other contributing coefficients

being strained according to (28). The result of the fit (λα0
2/2γ2 = −2.81×10−4) is reported

in figure 5: the agreement is quite satisfactory.
Besides, from relations (24)–(28) the following numerical form can be deduced for the

‘effective’ potential:

1̃8 = P {(T + 11.3)[−4.8 × 10−6(T + 11.3) − (e1 − e2) + 1123(T − 120.4)(e1 − e2)]

+1.46× 106(e1 − e2)
3 + 7.27× 107(e1 − e2)

4]} (31)

whereP = Rα0
2C1/γ2 is a constant. Plots of (31) at different temperatures are reported

in figure 6. From (31), the transition temperature is determined atTc = 126.5 ± 0.3 K, in
excellent agreement with previously reported values [2, 3, 7, 22, 25]. As a matter of fact,
at this temperature, the fitted equilibrium spontaneous value of (e1 − e2) abruptly changes
(first-order transition) from−10.07× 10−3 (monoclinic phase) to zero (hexagonal phase).
Also, the ‘triggering’ condition (22) is fulfilled:

ηc = −β1/γ
′
1 = −10.07× 10−3R � α0

2(Tc − T2)/2C1 = −1.32× 10−3R � 0

as it should be for the occurrence of the I↔ II phase transition.
Finally, it is worth noting that Levola and Kleemann [22] have interpreted the I↔ II

transition of TMMC by using a Landau free energy expansion of the form

18 = 18(η) + 18(e) + 18(η, e)

which obviously cannot account for the doubling of the unit cell in phase II, because
of the absence of the OPξ and of coupling terms betweenη and ξ (see relations (1)–
(6)). In fact, as stressed in subsection 4.2, this potential merely describes the I↔ II
phase transition (η 6= 0, ξ = 0). Nevertheless, the authors of [22] fitted their (a, b)
birefringence data with relation (18) and, in a narrow temperature range belowTc, they
found Tc (TIII ) = 126.0 K and T1 = 119.8 K [22] whereas, as already mentioned, the
valueT1 = 74 K was determined from ultrasonic measurements [12, 13]. When comparing
relation (24) to (31), it now appears that the terms−α2

2/4γ2 − (α2C1/γ2)η are always small
compared to the third- and fourth-order terms. Thus, neglecting these small terms in (24),
an approximate (overestimated) value ofηII is given by [13, 24]

ηII = (3ηc/4)[1 +
√

1 − 8(T − T ′
1)/9(T +

II − T ′
1)] (32)

where

T ′
1 = T1 + C2

1/α0
1γ2 (33)

and

T +
II = T ′

1 + β2
1/α0

1γ
′
1. (34)

T +
II is the appropriate transition temperature from phase I to phase II. Relation (32) is

now of the same algebraic form as (18), but the characteristic temperaturesT +
II andT ′

1 are
renormalized ones, owing to the existence of the coupling terms betweenη andξ . Hence, it
turns out that the temperatureT1, as determined by Levola and Kleemann [22], was in fact
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Figure 6. Plots of the ‘effective’ potential of TMMC at different temperatures through the
hexagonal↔monoclinic phase transition, according to relation (31) (see the text).

T ′
1 given in (33). Using the parameters obtained from (31), i.e.Tc ≈ T +

II = 126.5 K and
T ′

1 = T1 + δ = 120.5 K, we verified by simple numerical simulation that the approximate
relation (32) is quite able to reproduce the thermal behaviour of (e1−e2). Thus, the results of
(a, b) birefringence [22] are in a good agreement with ours (119.5 K compared to 120.5 K
for T ′

1 and 126.0 K compared to 126.5 K forTc) and the apparent discrepancy between
ultrasonic and birefringence measurements is now removed.

It should be mentioned however that relation (32) corresponds to a situation whereα2 is
strictly equal to zero; in fact this condition represents a borderline case since it means that
we are exactly at the limit of stability of the hexagonal phase I. Nevertheless, our results
strongly suggest that the parameterα2 remains small with respect to the other coefficients
in (21) and (24). In other words, this leads to a rather ‘flat’ effective potential in theξ

direction, and consequently the existence of large fluctuations of the OPξ can be expected.
As a matter of fact, diffuse x-ray diffraction measurements performed with TMMC [9] have
shown the presence of translational disorder of the octahedra chains along the hexagonal
axis, related to the TA(M) mode.

5. Conclusion

A systematic investigation of TMMC as a function of temperature by means of x-ray
diffraction has been performed. These new data have been confronted with the Landau free
energy potential, including two coupled order parameters, previously proposed to account
for the behaviour of theC66 elastic constant [13]. The thermal evolution of the spontaneous
strain components in the monoclinic phase, (e1 − e2) and e6 related to the zone-centre
order parameterη, as well as the intensity of superstructure reflections, related to the zone-
boundary order parameterξ responsible for unit-cell doubling at the phase transition, are
satisfactorily described with this potential. Besides, (a, b) birefringence measurements [22]
also comply with this model. Thus the veracity of the mechanism according to which the
zone-centre order parameter ‘triggers’ the zone-boundary one appears to be more thermally
established.
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